CLASS - IX MATHEMATICS

Real Numbers

1. Are all integers natural numbers?

Ans.: No, because natural numbers does not contain 0, -1, -2, ... etc.

2. Write three rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.

Ans.: $\frac{1}{3} = \frac{2}{6} = \frac{20}{60}$ $\frac{1}{2} = \frac{3}{6} = \frac{30}{60}$

Three rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$ are $\frac{7}{20}$, $\frac{11}{30}$, $\frac{23}{60}$.

3. Write three irrational numbers between $\sqrt{5}$ and $\sqrt{11}$.

Ans.: Three irrational numbers between $\sqrt{5}$ and $\sqrt{11}$ are $\sqrt{6}$, $\sqrt{7}$, $\sqrt{10}$.

4. Write two irrational numbers such that sum and product of the numbers are rational.

Ans.: $3 + \sqrt{2}$ and $3 - \sqrt{2}$ are two irrational numbers whose sum and product are rational numbers.

Sum of the numbers $= (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$, which is rational.

Product of the numbers $= (3 + \sqrt{2}) \times (3 - \sqrt{2}) = 9 - 2 = 7$, which is rational.

5. Place $\sqrt{6}$ on the real number line.

Ans.:

Let, on the real number line A denotes 0 (zero) and B denotes 1 (one). Draw perpendicular BC on AB such that BC = 1 unit. A, C are joined.

According to Pythagoras' theorem, $AC = \sqrt{1^2 + 1^2}$ units $= \sqrt{2}$ units.

Let, on the real number line A and E denote 0 (zero) and 2 (two) respectively. Draw perpendicular EF on AE such that EF = AC. $\therefore EF = \sqrt{2}$ units. Join A and F.

According to Pythagoras' theorem, $AF = \sqrt{2^2 + (\sqrt{2})^2}$ units $= \sqrt{6}$ units. An arc is drawn with centre at A and radius AF, which cuts the real number line at G. G denotes $\sqrt{6}$ on real number line.