CLASS - IX

MATHEMATICS

Real Numbers

1. Are all integers natural numbers?

Ans.: No, because natural numbers does not contain $0,-1,-2, \ldots$ etc.
2. Write three rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.

Ans.: $\frac{1}{3}=\frac{2}{6}=\frac{20}{60}$
$\frac{1}{2}=\frac{3}{6}=\frac{30}{60}$
Three rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$ are $\frac{7}{20}, \frac{11}{30}, \frac{23}{60}$.
3. Write three irrational numbers between $\sqrt{5}$ and $\sqrt{11}$.

Ans.: Three irrational numbers between $\sqrt{5}$ and $\sqrt{11}$ are $\sqrt{6}, \sqrt{7}, \sqrt{10}$.
4. Write two irrational numbers such that sum and product of the numbers are rational.

Ans.: $3+\sqrt{2}$ and $3-\sqrt{2}$ are two irrational numbers whose sum and product are rational numbers.
Sum of the numbers $=(3+\sqrt{2})+(3-\sqrt{2})=6$, which is rational.
Product of the numbers $=(3+\sqrt{2}) \times(3-\sqrt{2})=9-2=7$, which is rational.
5. Place $\sqrt{6}$ on the real number line.

Ans.:

Let, on the real number line A denotes 0 (zero) and B denotes 1 (one). Draw perpendicular BC on AB such that $\mathrm{BC}=1$ unit. A, C are joined.
According to Pythagoras' theorem, $A C=\sqrt{1^{2}+1^{2}}$ units $=\sqrt{2}$ units.

Let, on the real number line A and E denote 0 (zero) and 2 (two) respectively. Draw perpendicular EF on AE such that $\mathrm{EF}=\mathrm{AC} . \therefore E F=\sqrt{2}$ units. Join A and F .

According to Pythagoras' theorem, $A F=\sqrt{2^{2}+(\sqrt{2})^{2}}$ units $=\sqrt{6}$ units. An arc is drawn with centre at A and radius AF , which cuts the real number line at G . G denotes $\sqrt{6}$ on real number line.

